
Aqueous phase reforming of the waste-water 
derived from lignin hydrothermal liquefaction 

From the simplicity of model compounds to the 
complexity of real streams

Samir Bensaid

Politecnico di Torino

Workshop on Advanced PtG and PtL Technologies, 8th March 2021



Aqueous phase reforming

1 R.R. Davda et al., A review of catalytic issues and process conditions for renewable hydrogen and alkanes by 
aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts, 2005
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Hydrothermal liquefaction
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Experimental activity: methods

5

T, P real-time
Monitoring

Gas phase composition

Liquid phase 
composition

TOC of liquid phase

Catalyst Recovery and C 
content  determination
with TGA;
Catalyst analysis: BET, 
TGA, XRD, FT-IR



Experimental activity: APR with Pt/C
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❖ Reaction volume: 75 ml

❖ Substrate concentration: 0.3 and 0.9 wt.% C ( ≈ 1 and 3 wt.% of organics)

❖ Catalyst: 5wt% Pt/Carbon; 0,375 g, i.e. 5 g/l or 0,5 wt.%

❖ Reaction time: 0h-8h

❖ Reaction temperature: 230-250-270°C

❖ APR Performance parameters: 𝐶𝑛𝐻2𝑦𝑂𝑛 + 𝑛𝐻2𝑂 𝑛𝐶𝑂2 + 𝑦 + 𝑛 𝐻2

➢ Carbon to Gas conversion (%): 100 ∗
Cgas

Cfeed

➢ H2 yield APR (%): 100 ∗
H2 gas

(y+n)∗substratemolarityfeed

➢ H2 gas distribution selectivity (%): 100 ∗
H2 gas

(H2+2∗CH4+3∗C2H6+4∗C3H8)gas

➢ H2 selectivity APR (%): 100 ∗
ΤH2 CO2 gas

((y+n)/n)APR
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Results: APR with Pt/C with model compounds

❖ Reaction conditions: 
0.9 wt.%, 2h, 270°C 

Compound Concentration 
(wt.%)

Glycolic acid 1.7-1.8

Acetic acid 0.8-0.9

Methanol 0.4-0.6

Acetone 0.07-0.1

Phenol 0.03-0.05

Aqueous phase composition 
from corn stover HTL1

1. E. Panisko et al, Biomass and Bioenergy. 74 (2015)
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Results: APR with Pt/C with model compounds

Influence of time ❖ Reaction conditions: 0.9 wt.%, 270°C, single compounds

APR of Glycolic acid

H2/CO2 ≈ 1.5

H2/CO2
<1.5

+ H2

Glycolic acid Acetic acid

Secondary reactionAPR

Glycolic acid
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Results: APR with Pt/C with model compounds

Influence of time ❖ Reaction conditions: 0.9 wt.%, 270°C, single compounds

CO2/CH4 ≈ 1

APR of Acetic acid

Acetic acid Methane
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Results: APR with Pt/C with model compounds

Influence of time ❖ Reaction conditions: 0.9 wt.%, 270°C, single compounds

Lactic a. – liquid Lactic a. – gas 

Lactic a.

Propionic a.

Ethanol

≈ 0.5 lactic a.FEED
Path 1

CO2/CH4 ≈ 2
Path 2

Path 2

Path 1 H2 formed in path 2 ≈ 
H2 consumed in path 1

ΔCO2 ≈ Δethane
Path 1

Δpropionic a. ≈ Δethane
Path 1
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Carbon weight concentration (wt % C) Inorganic species (ppm)

Sample Glycolic Lactic Acetic Methanol Glycerol
Phenolic 

compounds
Na K Ca S P

TOC
(mgC/L)

HTL-AP 0.047 0.112 0.083 0.138 0.029 0.116 518 281 13 116 11 11558

Results: APR with Pt/C with lignin-HTL waste waters

Characterization

HPLC chromatograms of the HTL-AP:    
1: glycolic acid, 2: lactic acid, 3: glycerol, 
4: acetic acid, 5: acetaldehyde, 6: 
methanol, 7: catechol, 8: phenol, 9: 
guaiacol. 

Sample obtained with HTL at: 350°C, 
autogenous pressure, residence time of 
10 min, dry lignin-rich coproduct to 
water ratio of 10% by weight



Results: APR with Pt/C with lignin-HTL waste waters

❖ Reaction conditions: 2h, 270°C,~1wt.% C, HTL-APInfluence of concentration

2nd test with the same 
residual aqueous 

feedstock but a fresh 
catalyst
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1st test with decreasing 
H2 production vs

initial concentration
(not only yield!)
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Carbon weight concentration (wt % C) Inorganic species (ppm)

Sample Glycolic Lactic Acetic Methanol Glycerol
Phenolic 

compounds
Na K Ca S P

TOC

(mgC/L)
HTL-AP 0.047 0.112 0.083 0.138 0.029 0.116 518 281 13 116 11 11558

Treated HTL-AP 1 0.049 0.102 0.078 0.124 0.022 0.056 190 140 15 19 1 10810*

Treated HTL-AP 2 0.051 0.109 0.051 0.099 0.020 0.017 n.a. n.a. n.a. n.a. n.a. 10540*

Treated HTL-AP 3 0.050 0.099 0.044 0.096 0.020 ≈ 0 350 233 0 53 43 10358*

Results: APR with Pt/C with lignin-HTL waste waters

Characterization

HPLC chromatograms of the HTL-AP:    
1: glycolic acid, 2: lactic acid, 3: glycerol, 
4: acetic acid, 5: acetaldehyde, 6: 
methanol, 8: catechol, 9: phenol, 10: 
guaiacol.

Treated HTL-AP 1-2-3: selective removal 
of phenolic compounds with DEE (7). 
* TOC includes residual DEE

Mainly under the form of SO4
2- from 

the step of cellulose acid hydrolysis

phenolics

DEE
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Results: APR with Pt/C with lignin-HTL waste waters

❖ Reaction conditions: 2h, 270°C,0.9wt.% C, HTL-
AP and Treated HTL-AP 1-2-3

Influence of concentration
and of phenolic compounds 

* Checked negligible 
APR activity of DEE

Positive effect towards 
H2 production coming 

from the removal of 
phenolic compounds
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Results: APR with Pt/C with lignin-HTL waste waters

❖ Reaction conditions: 2h, 270°C, 0.9wt.% C, glycolic acidCatalyst stability

Test with exhaust catalysts  
after a test with HTL-AP and 
HTL-AP3 (without phenolic 

compounds)

Pore plugging and Pt inaccessibility 
not fully prevented by DEE. 
In addition, other deactivation 
mechanisms could be present (i.e. S)



28

Concluding remarks

❑ New classes of compounds were challenged against APR, with Pt/Alumina and 

Pt/C catalysts

❑Mixtures of compounds behaved differently than the single compounds tests

❑ Real waste waters from lignin HTL were investigated, evidencing strong 

deactivation phenomena

❑ The removal of the phenolic compounds seemed to reduce the fouling 

associated to these feedstock.
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